

Obstruction Marking and Lighting

Subject: Obstruction Markıng and

Date: 11/29/95
Initiated by: ATP-240

1 PURPOSE This Advisory Circular (AC) describes the Federal Aviation Admınistration's (FAA) standards for marking and lighting structures to promote aviation safety

2 CANCELLATION AC $70 / 7460-1 \mathrm{H}$, Obstruction Marking and Lighting, dated August 1991 is canceled by this revision
Note-
BACKGROUND Since there ts a typographical stmillartty between the alphanumeric characters " I and " I " the " I " character has been skapped and the letter " J " has been ured for this edition of the advisory circular

3 EFFECTIVE DATE This advisory circular becomes effectlve January 1, 1996.

4 RELATED DOCUMENTS.

a. Federal Aviation Regulations Part 77 describes the standards used relative to objects in the navigable arrspace and specifies $t h e$ requirements for notice to the Admimistrator of certain proposed construction or alteration.
b. Federal Commumications Commission (FCC) specifications contaned in Part 17 of the FCC Rules and Regulations

5 HIGHLIGHTS. This crrcular contans numerous editoral changes Major changes are indicated below
a. Paragraph 5, Modificatuons and Deviations, states sponsor's responsibility to adhere to recommended chapters
of AC Paragraph added concernung voluntary marking and/or bghtmg "Paragraph added advising proponents to become famuliar with various bghtmg systems "
b. Paragraph 6, FCC Approval, adds notufication requrement t o National Oceanic a n d Atmospheric Administration (NOAA) of modifications/deviations to marking and/or lighting
c. Paragraph 33. Patterns. adds requirement to paint conduit and cable wres
d. Paragraph 36. Catenary Lighting, deleted
e. Paragraph 43, Catenary Lighting, added
f. Paragraph 51, Standards, adds requirement for lights to flash simultaneously
g Paragraph 53b(2)(b), Poles, Towers. and Sımilar Skeletal Structures, revised
h. Paragraph 105. Catenary Lightung, added

1 Paragraph 115, Catenary Lightung, added
J. Paragraph 132. Avalabilty of Specifications, changes General Service Admunstration's address and telephone number
k. Appendix 1. Figure 1 (Types of Red Obstruction Lights) and Figure 2 (Types of High and Meduum Intensity White Obstruction Lights), deleted These figures are replaced with a listing of types of obstruction lights

Table of Contents

CHAPTER 1. ADMINISTRATIVE PROCEDURES
1 REPORTING REQUIREMENTS 1
2 PRECONSTRUCTION NOTICE 1
3 FAA ACKNOWLEDGMENT 1
4 SUPPLEMENTAL NOTICE 1
5 MODIFICATIONS AND DEVIATIONS 1
6 FCC APPROVAL. 2
7 METRIC UNITS 2
CHAPTER 2. GENERAL
20 OBJECTS TO BE MARKED AND LIGHTED 3
21 GUYED STRUCTURES 3
22 MARKING AND LIGHTING EQUIPMENT 3
23 LIGHT FAILURE NOTIFICATION 3
24 NOTIFICATION OF RESTORATION 3
25 FCC REQUIREMENT 3
C - R 3. MARKING
30 PURPOSE 5
31 PAINTCOLORS 5
32 STANDARDS 5
33 PATTERNS 5
34 MARKERS 6
35 UNUSUAL COMPLEXITIES 7
36 OMISSION OR ALTERNATIVES TO MARKING 7
CHAPTER 4. LIGHTING
40 PURPOSE 9
41 STANDARDS 9
42 SYSTEM CONFIGURATIONS 9
43 CATENARY LIGHTING 9
44 RATED LAMP VOLTAGE 10
45 NONSTANDARD LIGHTS 10
46 PLACEMENT FACTORS 10
47 MONITORING OBSTRUCTION LIGHTS 10
48 ICE SHIELDS 11
49 DISTRACTION 11
CHAPTER 5. RED OBSTRUCTION LIGHTING STANDARDS
50 PURPOSE 13
51 STANDARDS 13
52 CONTROL DEVICE 13
53 POLES, TOWERS, AND SIMILAR SKELETAL STRUCTURES 13
54 CHIMNEYS, FLARE STACKS, AND SIMILAR SOLID STRUCTURE!? 14
55 WIND TURBINE STRUCTURES 14
56 GROUP OF OBSTRUCTIONS 14
57 ALTERNATE METHOD OF DISPLAYING OBSTRUCTION LIGHTS 14
58 PROMINENT BUILDINGS AND SIMILAR EXTENSIVE OBSTRUCTIONS 14
CHAPTER 6. MEDIUM INTENSITY FLASHING WHITE LIGHTING SYSTEM STANDARDS
60 PURPOSE 17
61 STANDARDS
61 STANDARDS 17 17
62 RADIO AND TELEVISION TOWERS AND SIMILAR SKELETAL STRUCTURES 17
63 CONTROL DEVICE 17
64 CHIMNEYS, FLARE STACKS, AND SIMILAR SOLID STRUCTURES 17
65 GROUP OF OBSTRUCTIONS 17
66 SPECIALCASES 18
67 PROMINENT BUILDINGS AND SIMILAR EXTENSIVE? OBSTRUCTIONS 18
CHAPTER 7. HIGH INTENSITY FLASHING WHITE LIGHTING SYSTEMS STANDARDS
70 PURPOSE 19
71 STANDARDS 19
72 CONTROL DEVICE 19
73 UNITS PER LEVEL 19
74 INSTALLATION GUIDANCE 19
75 ANTENNA OR SIMILAR APPURTENANCE LIGHT 20
76 CHIMNEYS, FLARE STACKS, AND SIMILAR SOLID STRUCTURES 20
77 RADIO AND TELEVISION TOWERS AND SIMILAR SKELETAL STRUCTURES 20
78 HYPERBOLIC COOLING TOWERS 20
79 PROMINENT BUILDINGS AND SIMLAR EXTENSIVE OBSTRUCTIONS 20
CHAPTER 8. DUAL LIGHTING WITH RED/MEDIUM INTENSITY FLASHING WHITE SYSTEMS
80 PURPOSE 23
81 INSTALLATION 23
82 OPERATION 23
83 CONTROL DEVICE 23
84 ANTENNA OR SIMILAR APPURTENANCE LIGHT 23
85 OMISSION OF MARKING 23
CHAPTER 9. DUAL LIGHTING WITH RED/HIGH INTENSITY FLASHING WHITE SYSTEMS
90 PURPOSE 25
91 INSTALLATION 25
92 OPERATION 25
93 CONTROL DEVICE 25
94 ANTENNA OR SIMILAR APPURTENANCE LIGHT 25
95 OMISSION OF MARKING 25
CHAPTER 10. MARRING AND LIGHTING OF CATENARY AND CATENARY SUPPORT STRUCTURES - MEDIUM INTENSITY FLASHING WHITE LIGHTS
100 PURPOSE 27
101 STANDARDS 27
102 CONTROL DEVICE 27
103 AREA SURROUNDING CATENARY SUPPORT STRUCTURES 27
104 THREE OR MORE CATENARY SUPPORT STRUCTURES 27
105 CATENARY LIGHTING 28
CHAPTER 11. MARKING AND LIGHTING OF CATENARY AND CATENARY SUPPORT STRUCTURES - HIGH INTENSITY FLASHING WHITE LIGHTS
110 PURPOSE 29
111 STANDARDS 29
112 CONTROL DEVICE 29
113 AREA SURROUNDING CATENARY SUPPORT STRUCTURES 29
114 THREE OR MORE CATENARY SUPPORT STRUCTURES 29
115 CATENARY LIGHTING 29
CHAPTER 12. MARKING AND LIGHTING MOORED BALLOONS AND KITES
120 PURPOSE31
121 STANDARDS 31
122 MARKING 31
123 LIGHTING 31
124 OPERATIONAL CHARACTERISTICS 31
CHAPTER 13. MARKING AND LIGHTING EQUIPMENT AND INFORMATION
130 PURPOSE33
131 PAINT STANDARD 33
132 aVAILABILITY OF SPECIFICATIONS 33
133 TOLERANCECHART 33
134 LIGHTS AND ASSOCIATED EQUIPMENT 33
135 AVAILABILITY 33
APPENDIX 1. Specifications for Obstruction Lighting Equipment Classification
APPENDIX 2. Miscellaneous
1 RATIONALE FOR OBSTRUCTION LIGHT INTENSITIES A2-1
2 DISTANCE VERSUS INTENSITIES A2-1
3 CONCLUSION A2-1
4 DEFINITIONS A2-1
5 LIGHTING SYSTEM CONFIGURATION A2-1

CHAPTER 1 ADMINISTRATIVE PROCEDURES

1 REPORTING REQUIREMENTS

Each person proposing any type of construction or alteration under the provisions of Federal Aviation Regulations (FAR) Part 77 is required to notufy the Federal Aviation Administration (FAA) by completing FAA Form 7460-1, Notice of Proposed Construction or Alteration The completed form should be sent to the Aur Traffic Division, FAA regional office having junsdiction over the area where the construction or alteration would be located FAA Form $7460-1$ may be obtaned from the FAA headquarters, regional offices. and Arports District Offices

2 PRECONSTRUCTION NOTICE

This notice must be submitted
a. At least 30 days before the date the proposed construction or alteration is to begin
b. On or before the date, an application for a construction permit is filed with the Federal Communcations Commission (FCC) (The FCC advises its applicants to file with the FAA well in advance of the 30 day period required in paragraph 2 a , in order to expedite FCC processing)

3 FAA ACKNOWLEDGMENT

The FAA will acknowledge, in writung, receipt of each notice (FAA Form 7460-1) recenved

4 SUPPLEMENTAL NOTICE

If required for submission, FAA Form 7460-2, Notice of Actual Construction or Alteration, will accompany the FAA determination This is the authorized form that sponsors must complete and mall to the FAA when reporting the start, completion, or abandonment of construction Letters are acceptable in cases where the construction/alteration is temporary or a proposal is abandoned This notufication process is designed to permit the FAA the necessary time to change affected procedures and/or minumum flight alutudes and to otherwise alert armen of the structure's presence

Caution-

NOTIFICATION AS REQUIRED IN THE DETERMINATION IS
CRITICAL TO AVIATION SAFETY

5 MODIFICATIONS AND DEVIATIONS

Requests for modification or deviation from these standards must be submitted to the FAA regional office serving the area where the structure would be located Once approved, the sponsor is responsible to adhere to specific advisory circular chapter recommendatons and should notify the FAA \& FCC prior to removal of marking and/or lightung A
request received after a determination is issued may require a new study and could result in a new determination

The FAA strongly recommends that proponents become familar with the different types of lightung systems and to request specifically the type of system desired when submitting FAA Form 7460-1 Information about these systems can be found in the Advisory Circulars listed in Chapter 13, Marking and Lighting Equipment and Information Information should also be obtained from the manufacturers Proponents can then determine which system best meets their needs based on purpose, unstallation, and mantenance costs The type of system desired should then be requested in tem 2 D of FAA Form 7460-1 The FAA will make every effort to accommodate the request.
a. Modificatoons Modffications may be approved when they would not impar aviation safety Some examples of modifications are

1. Markang and/or Lighting Only a Portion of an Object. The object may be so located with respect to other objects or terrain that only a portion of it needs to be marked or lighted

2 No Markang and/or Lighting The object may be so located with respect to Other objects Or terra",, removed from the general flow of air traffic, or may be so conspicuous by its shape, size, or color that marking or lighting would serve no useful purpose

3 Voluntary Marking and/or Lighting The object may be so located with respect to other objects or terrain that the sponsor feels increased conspicuity would better serve aviation safety

4 Markang or Lighting an Object in Accordance wth theStandards for anObject of Greater Height or Size The object may present such an extraordinary hazard potental that higher standards may be recommended for nereased conspicuity to ensure the safety to air navigation
b. Deviations The FAA regional office conducts an aeronautical study of the proposed deviation(s) and forwards its recommendation to FAA headquarters in Washington, DC, for final approval Examples of deviations are changes in the

1 Colors of objects
2. Dimensions of color bands or rectangles

3 Colors/types of lights
4 Basic signals and intensity of lightung
5 Night/day lightung combinations
6 Flashrate

6 FCC APPROVAL

Any change to an original FAA determination uncluding modification, deviation or optional upgrade to white lighting on structures which are regulated by the FCC must also be filed with the FCC for proper authorization and annotations of obstruction marking and lighting These structures will be subject to inspection and enforcement of marking and lighting requirements by the FCC Upon completion of the actual change, notify Aeronautical Charting at.

NOAA Aeronautical Charting Division
SSMC-4 N/CG3111
1305 Eat-west Highway
Silver Sonng. MD 20910-3233

SSMC-4 N/CG3111
1305 Eat-west Hıghway
Silver Sonng. MD 20910-3233

7. METRIC UNITS

To promote an orderly transition to metric units, specafications include both English and metric (SI units) dimensions The metric conversions may not be exact equivalents, and untul there is an official changeover to the metric system, the English dimensions will govern

CHAPTER 2. GENERAL

20. OBJECTS TO BE MARKED AND LIGHTED

Any temporary or permanent object, including all appurtenances, that exceeds an overall height of 200 feet (61 m) above ground level (AGL) or exceeds any obstruction standard contamed in FAR Part 77, Subpart C, should normally be marked and/or lighted However, an FAA aeronautical study may reveal that the absence of marking and/or bgbtmg will not mpair aviation safety Conversely, the object may present such an extraordmary hazard potentual that hugher standards may be recommended for increased conspicuity to ensure safety to arr navigation Normally outside commercial lighting is not considered sufficient reason to omit recommended marking and/or lighting The FAA may also recommend marking and/or lighting a structure that does not exceed 200 feet AGL or Part 77, Subpart C standards because of its particular location

21 GUYED STRUCTURES

The guys of a 2,000 foot (610 m) skeletal tower are anchored from 1,600 feet $(488 \mathrm{~m})$ to 2,000 feet $(610 \mathrm{~m})$ from the base of the structure This places a portion of the guys 1,500 feet (458 m) from the tower at a height of between 125 feet (38 m) to 500 feet (153 m) AGL FAR Section 91119 requires plots, when operatung over other than congested areas, to remain at least 500 feet $(153 \mathrm{~m})$ from man-made structures Therefore. the tower must be cleared by 2,000 feet $(610 \mathrm{~m})$ horzontally to avoid all guy wires Properly mantaned marking and lighting are Important for increased conspicuity since the guys of a structure are difficult to see untrl arcraft are dangerously close

22 MARKING AND LIGHTING EQUIPMENT

It is strongly recommended that construction sponsors become famaliar with the types of lighting systems available and request the desired lighting systems when submittung FAA Form $7460-1$ If the marking and/or lighting is not speciffed on the form, the FAA regional office specialists will contact the sponsor by telephone and ascertain their preference. The FAA recommends use of only those marking and lightng systems which meet the technical standards establshed by the FAA Considerable effort and research have been expended in determining the munumum systems or quality of materials that will produce an acceptable level of safety in marking and lighting obstructions to air navigation Whle additional lights may be desirable to identufy an obstruction to arr navigation and may, on occasion be recommended, the FAA has specified
the minimum level in these recommended standards in the interest of economy, safety and related concerns Therefore, to provide an adequate level of safety, obstruction lighting systems should be installed, operated and mantained as stated in these recommended standards (See CHAPTER 13)

23 LIGHT FAILURE NOTIFICATION

Conspicuty is achieved only when all recommended lights are working Partial equipment outages decrease the margin of safety Any outage should be corrected as soon as possible Failure of a steady burning side or intermediate hgbt should be corrected as soon as possible, but notufication is not requred Any failure or malfunction that lasts more than thirty (30) minutes and affects a top light or flashing obstruction light regardless of its position should be reported immediately to the nearest automated flight service station (AFSS) or flight service station (FSS) so a Notice to Airmen (NOTAM) can be issued Toll-free numbers are histed in most telephone books This report should contain the following information
a Persons or organizations reportung light fallures should furnish their name, tutle, address, and telephone number

b The type of structure

c. Location of structure, including lattude and longtude, If known (prominent structures, landmarks, etc)
d. Heıght of structure above ground level (AGL)/above mean sea level (AMSL), if known
e. The date that normal operations are expected to resume

24 NOTIFICATION OF RESTORATION

As soon as normal operation is restored, notufy the same AFSS/FSS that recerved the notification of fallure When the outage occurs on an FCC-regulated structure, the FCC will be notufied if notice of restoration is not received within 30 days FCC advises that noncompliance with noufication procedures could subject its licensees to penalties or monetary forfertures

25 FCC REQUIREMENT

FCC licensees are required to file an environmental assessment with the Commission when seeking authorization for the use of the high intensity flashing white bgbtmg system

30 PURPOSE

Marking makes a structure more conspicuous to pilots during daylight hours This may be accomplished by coloning the structure or by using smtable markers

31 PAINT COLORS

Alternate sections of aviation orange and aviation white paint provide maximum visibility of an obstruction by contrast in colors (See paragraph 131)

32 STANDARDS

To be effective, paint should meet specific color requirements when freshly appled to a structure However, all outdoor paints deteriorate with tune While it is not practical to give a maintenance schedule for all climates, surfaces should be repanted when the color changes noticeably or its effectiveness is reduced by scaling, oxidation, chipping, or layers of industrial contamination Tolerance charts are avalable for determining when repainting is required The color should be sampled on the upper half of the structure, since weathering is greater there Color tolerance charts may be purchased from a supplier (See paragraph 133)
a. Materals and Applicaton Quality paint a n d materials should be selected to provide extra years of service The paint should be compatible with the surfaces to be painted, including any previous coatings, and suitable for the environmental conditions Surface preparation and paint application should be in accordance with manufacturer's recommendations
b. Surfaces Not Requirng Paunt Ladders, decks, and walkways of steel towers and sımılar structures need not be painted if a smooth surface presents a potentral hazard to maintenance personnel Paint may also be omitted from precision or critical surfaces if it would have an adverse effect on the transmission or radiation characteristucs of a signal However, the overall marking effect on the structure should not be reduced
c. Skeletal Structures Complete all marking/paintung prior to or immediately upon completion Of construction This apphes to catenary support structures, radio and television towers, and similar skeletal structures To be effective, paint should be applied to all mner and outer surfaces of the framework

33 PATTERNS

Paint patterns of various types are used to mark structures The pattern to be used is determined by the size and shape of the structure
a. Sold Pattern Obstades should be colored aviation orange of the structure has both horizontal and vertical dimensions not exceeding 105 feet (32 m)
b. Checkerboard Pattern Alternating rectangles of aviation orange and white are normally displayed on structures as follows

1. Normal uses

(a) Water, gas. and gram storage tanks
(b) Buildings, as required
(c)Large structures exceeding 105 feet (32 m) across having a horizontal dimension that is equal to or greater than the vertical dimension
2. Size of Rectangles Sides of the checkerboard rectangles should measure not less than 5 feet (15 m) nor more than 20 feet (6 m) and should be as nearly square as possible However. if it is impractical because of the size or shape of a structure, the rectangle may have sides less than 5 feet (15 m) When possible, comer surfaces should be colored orange
3. Exceptions Structural designs not conducive to standard markings may be marked as follows
(a) If it is not practical to color the roof of a structure in checkerboard pattern, it may be colored solid orange
(b) If a spherical structure is not smtable for an exact checkerboard pattern, the shape of the rectangles may be modified to fit the shape of the surface (See APPENDIX 1 , FIG 2)
(c)Storage tanks not smtable for a checkerboard pattern may be colored by altemating bands of aviation orange and white or a limited checkerboard pattern applied to the upper one-third of the structure
(d) The skeletal framework of certain water. gas, and gram storage tanks may be excluded from the checkerboard pattern
c. Alternate Bonds Altemate bands of avıation orange and white are normally displayed on the following structures

1. Normal Uses
(a) Communication towers and catenary support structures
(b) Poles
(c) Smokestacks
(d) Skeletal framework of storage tanks and sımılar structures
(e) Structures which appear narrow from a side view, that are 105 feet ($3 \mathbf{2 m}$) or more across, and the horizontal dimension is less than the vertical dimension
(f) Wmd turbine generator support structures including the nacelle or generator housing
(g) Coaxial cable, conduts and other cables attached to the face of a tower
2. Color Band Charactersstics Bands for structures of any height should be
(a) Equal in width, provided each band is not less than $1^{1 / 2}$ feet $(05 \mathrm{~m})$ nor more than 100 feet (31 m) wide
(b) Perpendicular to the vertical axis with the bands at the top and bottom ends colored orange
(c) An odd number of bands on the structure
(d) Approximately one-seventh the height if the structure is 700 feet (214 m) AGL or less For each additional 200 feet (61 m) or fraction thereof, add one (1) additional orange and one (1) additional white band
(e) Equal and in proportion to the structure's height AGL (See TBL 1) (See APPENDIX 1 , FIG 1)

Structure Height to Bandwidth Ratio

	Example: If a Structure is:		
Greater Than	But Not More Than	Band Width	
105 feet $(32 \mathrm{~m})$	700 feet $(214 \mathrm{~m})$	$1 / 7$ of height	
701 feet $(214 \mathrm{~m})$	900 feet $(275 \mathrm{~m})$	$1 / 9$ of height	
901 feet $(275 \mathrm{~m})$	1,100 feet $(336 \mathrm{~m})$	$1 / 11$ of helght	
1,100 feet $(336 \mathrm{~m})$	1,300 feet $(397 \mathrm{~m})$	$1 / 13$ of helght	

3. Structures With a Cover or Roof If the structure has a cover or roof, the highest orange band should be contunued to cover the enture top of the structure

4 Skeletal Structures Atop Buildings If a flagpole, skeletal structure, or similar object is erected on top of a building, the combined height of the object and building will determine whether marking is recommended, however, only the height of the object under study determines the width of the color bands
5. Partial Markung If marking is recommended for only a portion of a structure because of shuelding by other objects or terrain, the width of the bands should be determined by the overall height of the structure A munimum of three bands should be displayed on the upper portion of the structure
6. Wind Turbine Rotor Blades Each rotor blade should be marked, front and beck, with three bands of orange and white paint beginning with an orange band at each tup The bands should be approximately the same width as those on the tower Tbe rem-g (inner) blade area may be any color (See APPENDIX 1, FIG 10)
d. Teardrop Pattern Spherical water storage tanks with a single crrcular standpipe support may be marked in a teardrop striped pattern. (See APPENDIX 1 , FIG 4) The tank should show alternate stripes of aviation orange and white The stripes should extend from the top center of the tank to its supporting standpipe The width of the stripes should be equal, and the width of each stripe at the greatest grth of the tank should not be less than 5 feet (15 m) nor more than 15 feet (46 m)
e Communty Names If it is desirable to paint the name of the community on the side of a tank, the stripe pattern may be broken to serve this purpose This open area should have a maximum height of 3 feet (09 m) (See APPENDIX 1 , FIG4)

34 MARKERS.

Markers are used to bighlight structures when it is mpractical to make them conspicuous by painting Markers may also be used in addition to aviation orange and white paint when additional conspicuity is necessary for aviation safety They should be displayed in conspicuous positions on or adjacent to the structures so as to retain tie general defintion of the structure They should be recognizable in clear ar from a distance of at least 4,000 feet (1219 m) and in all directions from which arcraft are likely to approach Markers should be distunctively shaped, 1 e spherical, cylundncal, so they are not mustaken for items that are used to convey other information They should be replaced when faded or otherwise deteriorated.
a. Spherical Markers Spherical markers are used to identify overhead wires Markers may be of another shape, 1 e , cyludrical, provided the projected area of such markers will not be less than that presented by a spherical marker

1. Size and color

(a) The diameter of the markers used on extensive catenary wrres across canyons, lakes, nvers, etc, should be not less than 36 inches (91 cm) Smaller 20 -mch (51 cm) spheres are permitted on less extensive power lines or on power lines below 50 feet (15 m) above the ground and within 1,500 feet (458 m) of an arport runway end Each marker should be a sold color such as aviation orange. white, or yellow (See paragraph 131 for color standards)

2 Installations

(a) Spacing Markers should be spaced equally along the wire at intervals of approximately 200 feet (61 m) or fraction thereof Intervals between markers should be less in critical areas near runway ends ($1 \mathbf{e}, 30$ to 50 feet) They
should be displayed on the highest wire or by another means at the same height as the highest we where there is mom than one wire at the highest point, the markers may be installed alternately along each wire if the distance between adjacent markers meets the spacing standard This method allows the weight and wind loading factors to be distributed
(b) Pattern An altemating color scheme provides the most conspicuity against all backgrounds Mark overhead wires by alternating solid colored markers of aviation orange, white, and yellow Normally, an orange sphere is placed at each end of a line and the spacmg is adjusted (not to exceed 200 feet) to accommodate the rest of the markers When less than four markers are used, they should all be aviation orange
b. Flag Markers Flags are used to mark certan structures or objects when it is technically impractical to use spherical markers or painting Some examples are temporary construction equipment, cranes, derricks, oll and other drilling rigs Catenaries should use sperical markers

1 MunmumSue Each side of the flag marker should be at least 2 feet $(06 \mathrm{~m})$ in length
2. Color Patterns Flags should be colored as follows
(a) Solud. Aviation orange
(b) Orange and White Arrange two trangular sections, one aviation orange and the other white to form a rectangle
(c) Checkerboard. Flags 3 feet or larger should be a checkerboard pattern of aviation orange and white squares, each 1 foot $(03 \mathrm{~m})$ plus or mınus 10 percent
3. Shape Flags should be rectangular in shape and have stuffeners to keep them from drooping in calm wmd
4. Display Flag markers should be displayed around, on top, or along the highest edge of the obstruction When flags are used to mark extensive or closely grouped
obstructions, they should be displayed approximately 50 feet (15 m) apart The flag stakes should be of such strength and height that they will support the flags above all surrounding ground, structures, and/or objects of natural growth

35 UNUSUAL COMPLEXITIES

The FAA may also recommend appropriate markmg in an area where obstructions are so grouped as to present a common obstruction to arr navigation

36 OMISSION OR ALTERNATIVES TO MARKING

There ate two alternatives to markmg Either alternative requires FAA review and concurrence

Noto-
 PROPONENTSMUSTENSURETHATALTERNATIVESTMARKING ARE COORDINATED WITH THE FCC FOR STRUCTURES UNDER ITS JURISDICTION

a. High Intensity Flashing White Lighting Systems. The high intensity lighting systems are more effective than aviation orange and white paint and therefore can be recommended instead of markmg This is particularly true under certain ambient light conditions involving the position of the sun relative to the direction of flight. When high intensity hghtmg systems are operated during daytime and twilight, other methods of markmg may be omitted When operated 24 hours a day, other methods of markmg and lighting may be omitted (See paragraph 71. and CHAPTER11)
b Meduum Intensty Flashing Whute Lightang Systems When meduum intensity lighting systems are operated duning daytume and twilight on structures 500 feet (153 m) AGL or less, other methods of markmg may be omitted When operated 24 hours a day on structures 500 feet (153 m) AGL or less, other methods of marking and lighting may be omitted (See paragraph 61, and CHAPTER 10)

40 PURPOSE

This chapter describes the various obstruction lighting systems used to identify structures that an aeronautical study has determined will require added conspicuity The lightung standards in this circular are the minimum necessary for aviation safety

41 STANDARDS

The standards outlined in this AC are based on the use of lighting units that meet specified intensitues, beam patterns, color, and flash rates as specified in AC 150/5345-43

These standards may be obtained from.

Department of Transportation
Property Use and Storage Section, Subsequent Distribution Office
M483 6
Ardmore East Business Center
3341 Q 75th Avenue
Landover, MD 20785

Note-

All flashing lights on a structure should flash sumultancously except for catenary support structures which have a distinct sequence flashing between levels

42 SYSTEM CONFIGURATIONS

Obstruction lightung may be displayed on structures as follows
a. Aviation Red Obstruction Lights Use flashing beacons and/or steady burnung lights during nighttime
b. Meduum Intensty Flashung White Obstruction Lughts Medium intensity flashing white obstruction lights may be used during daytime and twilight with automatically selected reduced intensity for mighttume operation when this system is used on structures 500 feet (153 m) AGL or less in height, other methods of marking and lightung the structure may be omitted Aviation orange and white paint IS always required for daytume marking on structures exceeding 500 feet (153 m) AGL This system is not normally recommended on structures less than 200 feet (61m) AGL
c. High Intensty Flashing White Obstruction Lights Use high intensity flashmg white obstruction lights during daytume with automatically selected reduced intensitues for twilight and nighttime operations When this system is used, other methods of marking and lighting the structure may be omitted. This system should not be recommended on structures 500 feet (153m) AGL or less. unless an FAA aeronautcal study shows otherwise
d. Dual Lighting This system consists of red lights for ughttume and hugh or medium intensity flashmg white lights for daytume and twilight. When a dual lightng system incorporates medium flashmg intensity hghts on structures 500 feet or less, or high intensity flashmg white lights on structures of any height, other methods of marking the structure may be omitted
e. Obstruction Lughts During Construction. A s the height of the structure exceeds each level at which permanent obstruction lights would be recommended, two or more hghts of the type specified in the determination should be installed at that level Temporary high or medrum intensity flashmg white hghts. as recommended in the determination, should be operated 24 hours a day untll all permanent lights are in operation In etther case, two or more lights should be mstalled on the uppermost part of tbe structure any tume it exceeds the height of the temporary construction equipment. They may be turned off for periods when they would interfere with construction personnel If practical, permanent obstruction hghts should be installed and operated at each level as construction progresses The hghts should be posituoned to ensure that a pulot has an unobstructed view of at least one light at each level
f. Temporary Construction Equipment Laghtung Smce there is such a variance in construction cranes, derricks, oll and other drilling ngs, each case should be considered individually Lights should be mstalled according to the standards given in CHAPTER 5, CHAPTER 6 , CHAPTER 7, or CHAPTER 8 as they would apply to permanent structures (See CHAPTER 3 for daytume marking)

43 CATENARY LIGHTING

Lighted markers should be used for increased night conspicuty of high-voltage (69 KV or higher) transmission line catenary wires These markers should be used on transmission line catenary wires near aurports, heliports, across rivers, canyons. lakes, etc The lighted markers should be manufacturer certufied as recognizable from a minimum distance of 4,000 feet (1219 m) under nughttume, minimum VFR conditions or having a minumum intensity of at least 325 candela The lightmg untt should emst a steady burming red light. They should be used on the highest energized line If the markers are mstalled on a line other than the highest catenary, then spherical markers specified in paragraph 34 should be used in addition to the lighted markers (The maximum distance between the line energzing the lighted markers and the highest catenary above the lighted marker should be more than 20 feet) Markers should be distunctively shaped, 1 e , spherical, cylindrical, so they are not mistaken for items that are used to convey other information They should be visible in all directions from which au-craft are likely to approach
a. Sue and Color The diameter of the markers used on extensive catenary wres across canyons, lakes, rivers, etc , should be not less than 36 inches (91 cm) Smaller 20-minch (51 cm) markers are permitted on less extensive power lines or on power lines below 50 feet (15 m) above tie ground and within 1,500 feet (458 m) of an arrport runway end Each marker should be a sobd color such as aviation orange, white, or yellow (See paragraph 131 for color standards)

b Installations

1 Spacing Lighted markers should be spaced equally along the wire at intervals of approximately 200 feet (61 m) or fraction thereof Intervals between markers should be less In critical areas near runway ends ($1 \mathrm{e}, 30$ to 50 feet) If lighted markers are installed on a lme other than the hughest catenary, then spherical makers specified in paragraph 34 should be used in addition to the lighted markers The maximum distance between the line energizing the lighted markers and the highest catenary above the lighted markers should be no more than 20 feet. The lighted markers may be installed alternately along each wire if the distance between adjacent markers meets the spacing Standard This method allows the weight and wmd loading factors to be distributed

2 Pattern An alternatung color scheme provides the most conspicuity aganst all backgrounds Mark overhead wires by altemating solid colored markers of aviation orange. white, and yellow Normally, an orange marker is placed at each end of a line and the spacing is adjusted (not to exceed 200 feet) to accommodate the rest of the markers When less than four markers are used, they should all be aviation orange

44 RATED LAMP VOLTAGE

To ensure the proper lumen output, for fixtures with incandescent lamps, the voltage prowled to the lamp filament should not vary more than plus or munus 3 percent of the rated voltage of the lamp The input voltage should be measured at the lamp socket with the lamp operating during the hours of normal operation. Lamps should be replaced after being operated for not more than 75 percent of their rated life or immediately upon fallure Flashtubes in a light unit should be replaced immedrately upon falure, when the peak effective nughtume intensity falls below 2,000 effectuve candela, or when the fixture begins skipping flashes, or at the manufacturer's recommended intervals (See paragraph 23, for reportung requrements in case of falure)

45 NONSTANDARD LIGHTS

Moored balloons, chumneys, church steeples. and sumilar obstructions may be floodlighted by fixed search light projectors installed at three or more equidistant points around the base of each obstruction The searchlight
projectors should provide an average illumunation of at least 15 footcandles over the top one-thud of the obstruction

46 PLACEMENT FACTORS

The height of the structure AGL determines the number of light levels The light levels may be adjusted slightly, but not to exceed 10 feet, when necessary to accommodate guy wires and personnel who replace or repair light fixtures Except for catenary support structures, the following factors should be considered when determining the placement of obstruction lights on a structure
a. Red Obstruction Lightang Systems The overall height of the structure mcludmg all appurtenances such as rods, antennas, obstruction lights, etc, determines the number of light levels (See APPENDIX 1, PIG 11)
b. Medium Intensty FIashing White Obstruction Lightang Systems The overall height of the structure mcludmg all appurtenances such as rods. antennas, obstruction hghts. etc, determines the number of light levels (See APPENDIX 1, FIG 12)
c. High Intensty Flashing White Obstruction Lighting Systems The overall height of the main structure excluding all appurtenances such as rods, antennas, obstruction lights, etc, determines the number of light levels (See APPENDIX 1, FIG 13)
d. Dual Obstruction Lughtang Systems The overall height of the structure mcludmg all appurtenances such as rods. antennas, obstruction hghts, etc, is used to determine the number of light levels for a medum intensity white obstruction lightred obstruction dual lighting system The overall height of the structure excludmg all appurtenances is used to determine the number of light levels for a high intensity whte obstruction light/red obstruction $\mathrm{d} u$ a 1 lighting system (See APPENDIX 1, FIG 7)
e. Adjacent Structures The elevation of the tops of adjacent buildings in congested areas may be used as the equivalent of ground level to determune the proper number of light levels required
f. Shielded Lights. If any light isshelded by an adjacent object, horizontal placement of the lights should be adjusted or additional lights should be mounted on that object to retain or contribute to the defintion of the obstruction

47 MONITORING OBSTRUCTION LIGHTS

Although some obstruction lighung systems have redundant features, they should be closely montored by visual or automatic means It is extremely important to visually inspect obstruction lightung in each operating intensity at least once every 24 hours on systems without automatic monitoring In the event a structure is not readily accessible for visual observation, a properly mantanned automatic monitor should be used. This monitor should be designed to register the malfunction of any light on the obstruction
regardless of tis position or color The montor (aural or visual) should be located in an area generally occupied by responsible personnel In some cases, this may require a remote montor in an attended location. All obstruction lights should be visually inspected on a regular basis

48 ICE SHIELDS.

Where icing is likely to occur, metal grate. 3 or similar protective ice shields should be installed drectly over each light unit to prevent faling ice 01 accumulations from damaging the hight unts
49. DISTRACTION.
a. Where obstruction lights may distract operators of
vessels in the proxumity of a navigable waterway, the sponsor must coordinate with the Commandant, US Coast Guard, to avoid interference with marine navigation
b. The address for marne information and coordnation is

Chief, Short Range Alds to Navigation
Division (G-NSR)
US Coast Guard Headquarters
2100 2nd street SW
Washington, DC 20593-0001
Telephone (202) 267-0980

CHAPTER 5. RED OBSTRUCTION LICHTING STANDARDS

50 PURPOSE

Red obstruction lights are used to increase conspicuity during nighttume Daytume and twilight marking is required

51 STANDARDS

The red obstruction lighting system is composed of flashmg omnidirectional beacons (L-864) and/or steady burning (L-810) lights when one or more levels is comprised of flashing beacon lighting, the lights should flash smultaneously (See APPENDIX 1 FIG 11)
a. Single Obstruction Light. A smgle (L-810) light may be used when more than one obstruction light is required etther vertically or horizontally or where maintenance can be accomplished within a reasonable tume

Top Leveh A single light may be used to identify low structures such as aurport ILS buildings and long horizontal structures such as perimeter fences and bulding roof outlunes
2. Intermedrate LeveL Single lights may be used on skeletal and solid structures when more than one level of lights is installed and there are two or more smgle lights per level
b. Double Obstructhon Light. A double (L-810) lught should be installed when used as a top light, at each end of a row of smgle obstruction lights, and in areas or locations where the farlure of a smgle unit could cause an obstruction to be totally unlighted

1. Top Level Structures $\mathbf{1 5 0}$ feet (46 m) AGL or less should have one or more double lights installed at the highest point and operating simultaneously
2. Intermediate Level Double lights should be mstalled at intermediate levels when a malfunction of a smgle light could create an unsafe condition and in remote areas where mantenance cannot be performed within a reasonable time Both units may operate smultaneously, or a transfer relay may be used to switch to a spare unit should the actuve system fall

3 Lowest Level. The lowest level of light units may be installed at a higher elevation than normal on a structure if the surrounding terrain, trees, or adjacent building(s) would obscure the lights (See APPENDIX 1) In certan instances, as determined by an FAA aeronautical study, the lowest level of lights may be ellmınated

52 CONTROL DEVICE

Red obstruction bghts should be operated by a satasfactory control device (e g, photo cell, tuner, etc) adjusted so the lights will be turned on when the northern sky illuminance
reaching a vertical surface falls below a level of 60 footcandles (6458 lux) but before reaching a level of 35 footcandles (3677 lux) The control device should turn thelights off when the northem sky llummance Inses to a level of not more than 60 footcandles (6458 lux) The lights may also remain on continuously The sensing device should, if practical, face the northern sky in the Northern Hemisphere (See AC 150/5345-43)

53 POLES, TOWERS, AND SIMILAR SKELETAL STRUCTURES

The following standards apply to radio and television towers, supporting structures for overhead transmission lines, and simular structures

a. Top Mounted Obstruction Light.

1. Structures 150 Feet (46m) AGL or Less Two or more steady burning (L-810) lights should be installed in a manner to ensure an unobstructed view of one or more lights by a pilot
2. Structures Exceeding 150 Feet (46m) AGL. At least one red flashmg (L-864) beacon should be installed in a manner to ensure an unobstructed view of one or more lights by a pilot.

3 Appurtenances 40 Feet (12m) or Less If a rod, antenna, or other appurtenance 40 feet (12 m) or less in height is incapable of supporting a red flashmg beacon, then it may be placed at the base of the appurtenance If the mounting location does not allow unobstructed viewing of the beacon by a pilot, then additional beacons should be added
4. Appurtenances Exceeding 40 Feet (12 m) If a rod, antenna, or other appurtenance exceeding 40 feet (12 m) in height is incapable of supporting a red flashmg beacon, a supporting mast with one or more beacons should be installed adjacent to the appurtenance Adjacent installations should not exceed the height of the appurtenance and be within 40 feet (12 m) of the top to allow the pilot an unobstructed view of at least one beacon

Mountung Intermedrate Levels The number of light levels is determined by the height of the structure, including all appurtenances, and is detarled in APPENDIX 1 The number of lights on each level is determined by the shape and height of the structure These lights should be mounted so as to ensue an unobstructed view of at least one light by a plot.

1 Steady Burning Lights (L.-MO)

(a) Structures 350 Feet (107m) AGL or Less Two or more steady burning (L-810) lights should be installed on diagonally or diametrically opposite positions
(b) Structures Exceeding 350 Feet (107 m) AGL. Install steady b-g (J-8 10) lights on each outside corner of each level

2. Flashing Beacons (L-864)

(a) Structures 350 Feet (107 m) AGL or Less These structures do not require flasbmg (L-864) beacons at intermediate levels
(b) Structure Exceeding 350 Peel (107m) AGL. At intermediate levels, two beacons ($\mathrm{L}-864$) should be mounted outside at dagonally opposite positions of intermediate levels

54 CHIMNEYS, FLARE STACKS, AND SIMILAR SOLID STRUCTURES.

a Number of Lught Unuts

1. The number of units r-ended depends on the diameter of tbe structure at tbe top The number of bghts recommended below are the minmum
2. When the structure diameter is
(a) 20 Feet ($6 m$) or Less Three light units per level.
(b) Exceedung 20 Feet (6m) But Not More Than 100 Feet (31m) Four light units per level
(c) Exceeding 100 Feet (31m) But Not More Than 200 Feet (61m) Six light unts per level
(d) Exceeding 200 Feet (61 m) Eight light units per level

b Top Mounted Obstructron Laghts

1. Structures 150 Feet (46m) AGL or Less L-810 lights should be mstalled horizontally at regular intervals at or near the top
2. Structures Exceeding 150 Feet (46m) AGL. At least three $L-864$ beacons should be installed
3. Chmmeys, Cooling Towers, and Flare Stocks Lights may be displayed as low as 20 feet (6 m) below the top to avord the obscuring effect of deposits and heat generally emitted by this type of structure It is important that these lughts be readily accessible for cleaning a n d lamp replacement (See APPENDIX 1)
c. Mounting Intermediate Levels The number of bght levels is determined by the height of the structure including all appurtenances For cooling towers 600 feet or less, intermediate light levels are not necessary
d. Structures Exceeding 600 F e et (183m) AGL. Structures exceeding 600 feet (183 m) AGL should have a second level of light units installed approximately at the midpoint of the structure and in a vertical line with the top level of lights
4. Steady Burning (L-810) Lights The recommended number of light levels may be obtained from APPENDIX 1 At least three lights should be installed on each level
5. Flashing (L-864) Beacons The recommended number of beacon levels may be obtaned from APPENDIX1 At least three lights should be installed on each level
(a) Structures 350 Feet (107m) AGL or Less These structures do not need intermediate levels of flashing beacons
(b) Structures Exceeding 350 Feet (107m) AGL At least three flashing (L-864) beacons should be mstalled on each level in a manner to allow an unobstructed view of at least one beacon

55. WIND TURBINE STRUCTURES

These structures should be lighted by mounting one flashing red beacon on the highest practucal point. The recommended number of intermediate bght levels may be obtained from APPENDIX 1 At least three steady b-g red bghts should be mstalled An FAA aeronautical study may recommend fewer bghts at locations where several structures are closely grouped

56 GROUP OF OBSTRUCTIONS.

When individual objects within a group of obstructions are not tbe same height and are spaced a maximum of 150 feet (46m) apart, the prominent objects within the group should be lighted in accordance with tbe standards for individual obstructions of a corresponding height In addition, at least one flashing beacon should be ustalled at the top of a prominent center obstruction or on a special tower located near the center of the group

57 ALTERNATE METHOD OF DISPLAYING OBSTRUCTION LGHTS

When recommended in an FAA aeronautical study, bghts may be placed on poles equal to the height of the obstruction and mstalled on or adjacent to the structure instead of installing lights on the obstruction

58. PROMINENT BUILDINGS AND SIMILAR EXTENSIVE OBSTRUCTIONS

When objects within a group of obstructions are approximately tbe same overall height above tbe surface and are located a maxımum of 150 feet (46 m) apart, the group of obstructions may be considered an extensive obstruction Install light units on tbe same horizontal plane at tbe highest portion or edge of prominent obstructions Light units should be placed to ensure that the light is visible to a pilot approaching from any direction Steady burning lights
should be \&splayed to indicate the extent of the obstruction as follows
a. Structures 150 Feet (46m) or Less in Any Honzontal Durection If the structure/extensive obstruction is 150 feet (46 m) or less horizontally, at least one steady burnug light (L-810) should be displayed on the hughest point at each end of the major axis of the obstruction. If this is impractical because of the overall shape, display a double obstruction light in the center of the highest pomt
b Structures Exceedung 150 Feet (46 m) un at Least One Horzzontal Direction. If the structure/extensive obstruction exceeds 150 feet (46 m) horizontally, display at least one steady burning light for each 150 feet $(46 \mathrm{~m})$, or fraction thereof, of the overall length of the major axis At least one of these lights should be displayed on the highest point at each end of the obstruction Additional lights should be displayed at approximately equal intervals not to exceed 150 feet (46 m) on the highest points along the edge between the end lights If an obstruction is located near a landing area and two or more edges are the same height, the edge nearest the landing area should be lighted
c. Structures Exceeding 150 Feet (46m) AGL. Steady burning red obstruction lights should be installed on the highest point at each end At intermediate levels. steady burning red lights should be displayed for each 150 feet (46 m) or fraction thereof The vertical position of these lights should be equidistant between the top lights and the ground level as the shape and type of obstruction will permit. One such light should be displayed at each outside comer on each level with the remaining hghts evenly spaced between the comer hghts
d Exceptions Flashing red beacons ($\mathbf{L - 8 6 4}$) may be used instead of steady burning obstruction hghts if early or special warning is necessary These beacons should be displayed on the highest points of an extensive obstruction at intervals not exceeding 3.000 feet $(915 \mathrm{~m})$ At least three beacons should be displayed on one side of the extensive obstruction to indicate a line of hghts
e Ice Shields Where icing is lukely to occur, metal grates or similar protective ice shields should be installed directly over each bght unit to prevent falling ice or accumulations from damagng tie light unts The light should be mounted in a manner to ensure an unobstructed view of at least one light by a pilot approaching from any durection.

CHAPTER 6 MEDIUM INTENSITY FLASHING WHITE LIGHTING SYSTEM STANDARDS

60 PURPOSE

Medium intensity flashing white (L-865) obstruction lights may provide conspicuity both day and night.

61 STANDARDS

The meduum intensity flashing white light s y s e m is normally composed of flashing omnudrectional hghts This system is not normally recommended on structures less than 200 feet AGL

62 RADIO AND TELEVISION TOWERS AND SIMILAR SKELETAL STRUCTURES

a. Mounting Lughts The number of levels recommended depends on the height of the structure, including antennas and simular appurtenances (See APPENDIX 1)

1 Top Levels One or more lights should be installed at the highest point to provide 360 degree coverage ensuring an unobstructed view

2 Appurtenances 40 feet (12 m) or less If a rod, antenna, or other appurtenance 40 feet (12 m) or less in height is incapable of supporting the medrum intensity flashing white light, then it may be placed at the base of the appurtenance If the mountung location does not allow unobstructed viewing of the medium intensity flashing white light by a pllot, then addtional lights should be added.
3. Appurtenances Exceeding 40 feet (12m) If a rod, antenna, or other appurtenance exceed. 940 feet (12 m) above the tup of the mann structure, a medium intensity flashing white light should be placed within 40 feet (12m) from the top of the appurtenance If the appurtenance (such as a whip antenna) is incapable of supportung the light, one or more hghts should be mounted on a pole adjacent to the appurtenance Adjacent installations should not exceed the height of the appurtenance and be within 40 feet $(12 \mathrm{~m})$ of the tup to allow the pilot an unobstructed yiew of at least one light.
b Intermediate Levels At intermediate levels, two beacons (L-865) should be mounted outside at diagonally or diametrically opposite positions of intermedate levels The lowest light level should not be less than 200 feet (61 m) AGL
c. Lowest Levels The lowest level of Light units may be mstalled at a higher elevation than normal on a structure if the surrounding terrann, trees, or adjacent building(s) would obscure the hghts (See APPENDIX 1) In certan instances, as determined by an FAA aeronautical study, the lowest level of hghts may be eliminated
d Structures 500 Feet (153m) ACL or Less When white lights are used during nightume and twilight only. marking
is required for daytume When operated 24 hours a day, other methods of marking and lighting are not required
e. Structures Exceeding 500 Feet (153m) AGL The lights should be used during mighttume and twilight and may be used 24 hours a day Marking is always requred for daytume (See CHAPTER 2 and CHAPTER 3)
f. Ice Shelds Where cing is likely to occur, metal grates or similar protective ice shelds should be installed directly over each hght unit to prevent falling ice or accumulations from damaging the light units The light should be mounted in a manner to ensure an unobstructed view of at least one light by a pulot approaching from any drection

63 CONTROL DEVICE

The light intensity is controlled by a device that changes the intensity when the ambient light changes The system should automatically change intensity steps when the northern sky illumination in the Northern Hemisphere on a vertical surface is as follows
a. Twlight-to-Night Thus should not occur before the illumination drops below five footcandles (538 lux) but should occur before it drops below two footcandles (215 lux)
b. Nught-to-Day The intensity changes listed in (a) above should be reversed when changing from the nught to day mode

64 CHIMNEYS, FLARE STACKS, AND SIMILAR SOLID STRUCTURES

a. Number of Lught Unts The number of unts recommended depends on the dameter of the structure at the top Normally, the top level is on the highest point of a structure However, the top level of chumney lights may be mstalled as low as 20 feet (6 m) below the top to minumize deposit buld-up due to emissions The number of lights recommended in the following table are the minmum When the structure diameter is
1.20 Feet ($6 \mathbf{m}$) or Less Three light units per level
2. Exceeding 20 Feet (6m) But Not More Than 100 Feet ($\mathbf{3 1 m}$) Four light unts per level
3. Exceeding 100 Feet (31m) But Not More Than 200 Feet (61m) Sxx light unts per level

4 Exceeding 200 Feet (61m) Eight lught unus per level.

65 GROUP OF OBSTRUCTIONS

When individual objects within a group of obstructions are not the same height and are spaced a maxumum of 1.50 feet (46 m) apart, the promment objects within the group should
be lighted in accordance with the standards for indsvidual obstructions of a corresponding height. In addition, at least one meduum intensity flashing white light should be installed at the top of a prominent center obstruction or on a special tower located near the center of the group

66 SPECIAL CASES

Where lighting systems are installed on structures located near highways, waterways. arrport approach areas, etc, caution should be exercised to ensue that the lights do not distract or otherwise cause a hazard to motorists, vessel operators, or pilots on an approach to an arport In these cases, shielding may be necessary This shielding should not derogate the intended purpose of the lightung system (Also see paragraph 47)

67 PROMINENT BUILDINGS AND SIMILAR EXTENSIVE OBSTRUCTIONS

When objects within a group of obstructions are approximately the same overall height above the surface and are located a maximum of 150 feet (46 m) apart, the group of obstructions may be considered an extensive obstruction Install light units on the same horizontal plane at the highest portion or edge of prominent obstructions Light units should be placed to ensure that the light is visible to a pilot approaching from any drection Lights should be displayed to indicate the extent of the obstruction as follows
a. Structures 150 Feet (46m) or Less in Any Horizontal Direction. If the structure/extensive obstruction is 150 feet (46 m) or less honzontally, at least one light should be displayed on the highest point at each end of the major axis of the obstruction If this is impractical because of the overall shape. \&splay a double obstruction light in the center of the highest point.
b Structures Exceeding 150 Feet (46m) in at Least One Horzontal Direction If the structure/extensive obstruction exceeds 150 feet (46m) honzontally, dısplay at least one light for each 150 feet (46 m) or fraction thereof, of the overall length of the major axis At least one of these lights should be displayed on the highest point at each end of the obstruction Additional lights should be displayed at approximately equal intervals not to exceed 150 feet (46 m) on the highest points along the edge between the end lights If an obstruction is located near a landing area and two or more edges are the same height, the edge nearest the landing area should be lighted
c. Structures Exceeding 150 Feet ($\mathbf{4 6 m}$) AGL Lights should be installed on the highest point at each end At intermeduate levels, lights should be displayed for each 150 feet (46 m), or fraction thereof The vertical position of these lights should be equidstant between the top lights and the ground level as the shape and type of obstruction will permit One such light should be displayed at each outside corner on each level with the remaining lights evenly spaced between the comer lights

CHAPTER 7 HIGH INTENSITY FLASHING WHITE LIGHTING SYSTEMS STANDARDS

70 PURPOSE

Lighting with high intensity (L-856) flashing white obstruction hghts provides the highest degree of conspicuity both day and mght

71 STANDARDS

When high intensity white lights are operated 24 hours a day, other methods of marking and lighting may be omitted This systems should not be recommended on structures 500 feet (153m) AGL or less unless a" FAA aeronautical study shows otherwise

72 CONTROL DEVICE

The light intensity is controlled by a device that changes the intensity when the ambient light changes The system should automatically change intensity steps when the northern sky illumination in the Northern Hemisphere on a vertical surface is as follows
a. Day-to-Twrlght This should not occur before the illumination drops to 60 footcandles (6458 lux), but should occur before it drops below 35 footcandles (3767 lux) The illuminance sensing device should. if practical, face the northern sky in the Northern Hemisphere
b Twilght-to-Night. This should not occur before the illumination drops below five footcandles (538 lux), but should occur before it drops below two footcandles (215 lux)
c. Night-to-Day The intensity changes bated in (a) and (b) above should be reversed when changing from the nught to day mode

73 UNITS PER LEVEL

One or more light units is needed to obtain the desired honzontal coverage The number of hght unts recommended per level (except for the supporting structures of catenary wires and buildings) depends upon the average outside diameter of the specific structure, and the horizontal beam width of the light fixture The light units should be installed in a manner to ensure a" unobstructed view of the system by a pilot approaching from any direction The "umber of hghts recommended are the minimum (See APPENDIX 1) When the structure diameter is
a. 20 Feet (6 m) or Less Three light units per level
b. Exceeding 20 Feet (6m) But Not More Than 100 Feet (31m) Four light units per level
c Exceeding 100 Feet (31m) SIX light units per level

74 INSTALLATION GUIDANCE

Manufacturing specifications provide for the effective peak intensity of the light beam to be adjustable from zero to 8 degrees above the horizon Normal installation should place the top $\mathbf{l} \operatorname{lght}$ at zero degrees to the horizontal and all other light units installed in accordance with TBL 2

Light Untt Elevalion Above the Horizontal

Height of Light Unit Above Terrain	Degrees of Elevation Above the Horizontal
Exceeding 500 feet AGL	0
401 feet to 500 feet AGL	1
301 feet to 400 feet AGL	2
300 feet AGL or less	3

TBL 2
a. Vertical Almung Where terran, nearby residential areas, or other situations dictate, the light beam may be further elevated above the honzontal The main beam of light at the lowest level should not strike the ground closer than 3 statute mules (5 km) from the structure If additional adjustments are necessary. the hghts may be individually adjusted upward, in 1 degree increments, startung at the bottom Excessive elevation may reduce its conspicuty by raising the beam above a collsion course flight path
b Specal Cases Where lightung systems are installed on structures located near highways, waterways, arrport approach areas, etc, caution should be exercised to ensure that the lights do not distract or otherwise cause a hazard to motorists, vessel operators, or pulots on an approach to an arrport. In these cases, shielding or an adjustment to the vertical or horizontal light aming may be necessary This adjustment should not derogate the intended purpose of the lighting system Such adjustments may require review action as described in CHAPTER 1 , paragraph 5 (Also see CHAPTER 4, paragraph 49)
c. Relocation or Omession of Light Unuts Light unts should not he installed in such a manner that the light pattern/output is disrupted by the structure

1 Lowest Level. The lowest level of light units may be installed at a higher elevation than normal on a structure if the surrounding terrain, bees. or adjacent building(s) would obscure tie lights (See APPENDIX 1) In certan instances, as determined by an FAA aeronautical study, the lowest level of hghts may be elimunated
2. Two Adjacent Structures Where two structures are stuated within 500 feet (153 m) of each other and the light units are installed at the same levels, the sides of the structures facing each other need not be lighted However, all hghts on both structures must flash simultaneously, except for adjacent catenary support structures Adjust
vertical placement of the bgbts to etther or both structures' intermediate levels to place the bgbts on the same horizontal plane Where one structure is bigher than the other, complete level(s) of lights should be mstalled on that part of the higher structure which extends above the top of the lower structure If the structures are of such heights that the levels of lights cannot be placed in identical horizontal planes. then the light units should be placed such that the center of the horzontal beam patterns do not face toward the adjacent structure For example, structures situated north and south of each other should have the light units on both structures mstalled on a northwest/southeast and northeast/southwest orientation (See APPENDIX 1)

3 Three or More A\¢ Structures The treatment of a cluster of structures as an individual or a complex of structures will be determuned by the FAA as the result of an aeronautical study, taking into consideration the location, heights, and spacing with other structures

75 ANTENNA OR SIMILAR APPURTENANCE LIGHT

When a structure lighted by a hıgh intensity flashing light system 1s topped with an antenna or simular appurtenance exceeding 40 feet (12 m) in height, a medium intensity flashing white light (L-865) should be placed within 40 feet (12 m) from the tup of the appurtenance This light should operate 24 hours a day and flash simultaneously with the rest of the lighting system

78 CHIMNEYS, FLARE STACKS, AND SIMILAR SOLID STRUCTURES

The number of light levels depends on the height of the structure excluding appurtenances Three or more bgbts should be mstalled cm each level in such a manner to ensure an unobstructed view by the pilot. Normally, the top level is on the highest point of a structure However, the top level of chimney bgbts may be installed as low as 20 feet (6 m) below the top to minumize deposit buld-up due to emissions

77. RADIO AND TELEVISION TOWERS AND SIMILAR SKELETAL STRUCTURES.

a. Mounting Lughts The number of levels recommended depends on the height of the structure. excluding antennas and similar appurtenances At least three lights should be mstalled on each level and mounted to ensure that the effective intensity of the full honzontal beam coverage is not impared by the structural members
b. Top Level. One level of lights should be installed at the highest pant of tbe structure If tbe highest point is a rod or antenna incapable of supporting a lighting system then the top level of ltgbts should be mstalled at the highest portion of the main skeletal structure When guy wires come together at the top, it may be necessary to install this level
of bgbts as low as 10 feet (3 m) below the top If the rod or antenna exceeds 40 feet (12 m) above the man structure, a meduum intensity flashing white light (L-865) shonld he mounted on the highest point If the appurtenance (such as a whip antenna) is incapable of supporting a medium intensity light, one or more lights should be mstalled on a pole adjacent to the appurtenance Adjacent installation should not exceed the height of tbe appurtenance and be within 40 feet (12 m) of the tup to allow an unobstructed view of at least one light (See paragraph 75)
c. Ice Shuelds Where icing is likely to occur, metal grates or simular protective ice shields should be mstalled drectly over each bgbt unt to prevent falling ice or accumulations from damaging the light units

78 HYPERBOLIC COOLING TOWERS

Light units should be installed in a manner to ensure all unobstructed view of at least two lights by a pilot approaching from any drection. (See APPENDIX 1)
a. Number of Light Unuts The number of units recommended depends on the diameter of the structure at the top The number of lights recommended in the following table are the minımum When the structure daameter is

120 Feet (6m) or Less Three light unts per level
2. Exceeding 20 Feet (6m) But Not More Than 100 Feet (31m) Four light unts per level
3. Exceeding 100 Feet (31m) But Not More Than 200 Feet (61m) Six light units per level

4 Exceeding 200 Feet (61m) Eight light units per

 levelb. Structures Exceeding 600 Feet (183m) AGL Structures exceeding 600 feet (183 m) AGL should have a second level of light unts mstalled approximately at the midpoint of the structure and in a vertical lme with the top level of lights

79. PROMINENT BUILDINGS AND SIMILAR EXTENSIVE OBSTRUCTIONS

When objects within a group of obstructions are approximately the same overall height above the surface and are located not more than 150 feet (46 m) apart, the group of obstructions may be considered an extensive obstruction. Install light units on the same horizontal plane at the hughest portion or edge of prominent obstructions Light unts should be placed to ensure that the light is visible to a pilot approaching from any drection These hights may require shielding, such as louvers. to ensure munmum adverse impact on local communities Extreme caution in the use of high intensity flashing white lights should be exercised
a. If the Obstruction us $\mathbf{2 0 0}$ feet (61m) or Less in Euher Horzontal Dimension, install three or more light units at the highest portuon of the structure in a manner to ensure that
at least one light is visible to a pilot approaching from any direction Units may be mounted on a single pedestal at or near the center of the obstruction. If light units are placed more than 10 feet (3m) from the center point of the structure, use a minimum of four units
b. If the Obstruction Exceeds 200 Feet (61m) in One Hormontal Dimension, but is 200 feet ($\mathbf{6 1 \mathrm { m } \text {) or less in the }}$ other, two light units should be placed on each of the shorter sides These light units may either be installed adjacent to each other at the midpoint of the edge of the obstruction or
at (war) each comer with the light unit aimed to provide 180 degrees of coverage at each edge One or more light unts should be installed along the overall length of the major axis These lights should be installed at approximately equal intervals not to exceed a distance of 100 feet (31 m) from the comers or from each other
c. If the Obstruction Exceeds 200 Feet (61 m) in Both Horizontal Domensions, light units should b e equally spaced along the overall perimeter of the obstruction at intervals of 100 feet (31m) or fraction thereof

CHAPTER 8. DUAL LIGHTING WITH RED/MEDIUM INTENSITY FLASHING WHITE SYSTEMS

80 PURPOSE

This dual lightung system uncludes red lights (L-864) for mughtume a nd medrum intensity flashing white lights (L-865) for daytume and twilight use This lighting system may be used in heu of operating a medum intensity flashing white lightung system at night There may be some populated areas where the use of medium intensity at mght may cause siguficant environmental concerns The use of the dual lighting system should reduce/mittgate those concerns

81 INSTALLATION

The hght unts should be installed as specified in tbe appropriate portions of CHAPTER 4 , CHAPTER 5 , and CHAPTER 6 The number of light levels needed may be obtained from APPENDIX 1

02. OPERATION

Lughting systems should be operated as specified in CHAPTER 4, CHAPTER 5 , and CHAPTER 6 as appropriate Botb systems should not be operated at the same tune. however. there should be no more than a Z-second delay when changung from one system to the other Outage of one of two lamps in the uppermost red beacon (L-864 meandescent unit) or outage of any uppermost red strobe shall cause the white obstruction light system to operate in its specified "mght" step intensity,

83 CONTROL DEVICE

The light system is controlled by a device that changes the system when tbe ambient light changes The system should automatically change steps when the northern sky illumination in the Northern Hemisphere on a vertical surface IS as follows
a. Twilight-to-Night. This should not occur before the illumination drops below 5 footcandles (538 lux) but should occur before it drops below 2 footcandles (215 lux)
b. Nught-to-Day The intensity changes listed ma above should be reversed when changing from the night to day mode

84 ANTENNA OR SIMILAR APPURTENANCE LIGHT

When a structure utiluzing this dual lighting system is topped with an antenna or similar appurtenance exceeding 40 feet (12m) in height, a meduum intensity flashing white and a red flashing beacon should be placed within 40 feet (12 m) from the tup of tbe appurtenance The white light should operate during daytume and twilight and the red light durng nighttume These lights should flash sumultaneously with the rest of the lightung system

85. OMISSION OF MARKING

When meduum intensity white lights are operated on structures 500 feet (153 m) AGL or less during daytume and twilight, other methods of marking may be omitted.

CHAPTER 9. DUAL LIGHTING WITH RED/HIGH INTENSITY FLASHING WHITE SYSTEMS

90 PURPOSE

This dual lightıng system includes red lights (L-864) for unghtume and high intensity flashing white lights (L-856) for daytime and twilght use This lighting system may be used in heu of operating a flashing white lighting system at nught. There may be some populated areas where the use of high intensity at night may cause siguficant environmental concerns The use of the dual lighting system should reduce/mitugate those concerns

91 INSTALLATION

'The light unts should be installed as specified in the approprate portions of CHAPTER 4 , CHAPTER 5 , and CHAPTER 7 The number of light levels needed may be obtaned from APPENDIX 1

92 OPERATION

Lighting systems should be operated as specified in CHAPTER 4, CHAPTER 5 , and CHAPTER 7 a s appropriate Both systems should not be operated at the same tume, however. there should be no more than a 2 -second delay when changing from one system to the other Outage of one of two lamps in the uppermost red beacon (L-864 incandescent unit) or outage of any uppermost red strobe shall cause the whte obstruction light system to operate in Its specfified " night" step intensity

93 CONTROL DEVICE.

The light intensity is controlled by a device that changes the intensity when the ambient light changes The system should
automatically change intensity steps when the northern sky illumination in the Northern Hemisphere on a vertical surface is as follows
a. Day-to-Twigght This should not occur before the illumination drops to 60 footcandles (6458 lux) but should occur before it drops below 35 footcandles (3767 lux) The illuminance sensing device should. if practical, face the northern sky in the Northern Hemsphere
b Twillight-to-Night This should not occur before the illumination drops below 5 footcandles (538 lux) but should occur before it drops below 2 footcandles (215 lux)
c Nught-to-Day The intensity changes listed in a and b above should be reversed when changung from the ught to day mode

94 ANTENNA OR SIMILAR APPURTENANCE LIGHT.

When a structure utulzing this dual lighting system is topped with an antenna or smular appurtenance exceeding 40 feet (12m) in height, a medium intensity flashing white light (I-865) and a red light should be placed within 40 feet (12m) from the thp of the appurtenance The white light should operate duning dayhme and twilight and the red light during nighttime

95 OMISSION OF MARKING

When high intensity white lights are operated during daytime and twilght, other methods of marking may be omatted

CHAPTER 10 MARKING AND LIGHTING OF CATENARY AND CATENARY SUPPORT STRUCTURES = MEDIUM INTENSITY FLASHING WHITE LIGHTS

100 PURPOSE

Lighting catenary support structures with a medıum intensity (L-866) omnidirectional flashmg white lighting system provides conspicuity both day and night. In addition, the unque sequential/simultaneous flashmg light system alerts pilots of the associated catenary wires In those instances where normally marking and red lighting of the structures would be deemed adequate for conspicuity, the medrum intensity flashmg white lighting system would be the preferred system The use of spherical markers shall be considered and is a separate issue involving additional factors

101 STANDARDS

a. Levels A system of three levels of sequentally flashmg light units should be installed on each supportmg structure or adjacent terrain Install one level at the top of the structure, one at the height of the lowest point in the catenary, and one level approximately midway between the other two light levels The middle level should normally be at least 50 feet (15 m) from the other two levels The middle light unit may be deleted when the distance between the top and the bottom light levels is less than 100 feet (30 m) If the installation presents a potential danger to maintenance personnel, or when necessary for lightning protection, the top level of lights may be mounted as low as 20 feet (6 m) below the highest point of the structure

1. Top Levels One or more lights should be installed at tie top of the structure to provide 360-degree coverage ensuring an unobstructed view If the installation presents a potental danger to maintenance personnel, or when necessary for lightning protection, the top level of hghts may be mounted as low as 20 feet (6 m) below the highest point of the structure
2. Horzontal Coverage The light units at the middle level and bottom level should be installed so as to provide a minumum of 180-degree coverage centered perpendicular to the flyway Where a catenary crossing is situated near a bend in a river, canyon. etc, or is not perpendicular to the flyway. the horizontal beam should be directed to provide the most effective light coverage to warn pilots approaching from esther direction of the catenary wires
3. Varation. The vertical and horizontal arrangements of the lights may be subject to the structural limits of the towers and/or adjacent terrain A tolerance of 20 percent from uniform spacing of the bottom and middle light is allowed If the base of the supportmg structure(s) is higher than the lowest point in the catenary, such as a canyon crossing, one or more lights should be mstalled on the adjacent terrain at the level of the lowest point in the span

These lights should be installed on the structure or terrain at the height of the lowest point in the catenary
b. Structures 500 Feet ($\mathbf{1 5 3 m}$) AGL or Less When white lights are operated 24 hours a day, painting can be ommitted This system with its unique flash rate and sequence precludes a pilot from mistaking tie support structures for stand-alone towers When white lights are used during nighttume and twilight only, painting should be used for daytime marking Spherical markers may also be needed
c. Structures Exceeding 500 Feet (153m) AGL The white lights should be used during nighttume and twilight and are recommended for use 24 hours a day Painting should always be used for daytume marking
d Flash Sequence The flash sequence should be middle level, top level, and bottom level with all lights on the same level flashmg simultaneously The time delay between flashes of levels is designed to present a unque system display
e Synchronzation. Although desirable. the correspondeng light levels on associated supportmg towers of a catenary crossing need not flash sumultaneously

102 CONTROL DEVICE

The light intensity is controlled by a device that changes the intensity when tbe ambient light changes The system should automatically change intensity steps when the northern sky illumination in the Northern Hemisphere on a vertical surface is as follows
a. Twillght-to-Night. This should not occur before tbe illumination drops below five footcandles (53 8 lux) but should occur before it drops below two footcandles (215 lux)
b. Night-to-Day The intensity changes listed in a above should be reversed when changing from the night to day mode

103 AREA SURROUNDING CATENARY SUPPORT STRUCTURES

The area in the immedrate vicinity of the supporting structure's base should be clear of all 1tems and/or objects of natural growth that could interfere with the line-of-sight between a pilot and the structure's lights

104 THREE OR MORE CATENARY SUPPORT STRUCTURES

Where a catenary wire crossing requires three or more supportmg structures, the inner structures should be equipped with enough light units per level to provide a fall coverage

105 CATENARY LIGHTING

Lughted markers are avalable f o r mcreased might conspicuty of h\&voltage (69 KV or hugher) transmission he catenary wres Lighted markers provide conspiculty both day and night, installation, size, color. and pattern should follow the gudelines of paragraphs 34 and 36 These markers should be used for increased night conspicuity of hugh-voltage (69 KV or higher) transmission line catenary wires near aurports, heliports, across rivers, canyons, lakes, etc The lighted markers should be manufacturer certufied as recognizable from a minimum distance of 4,000 feet (1219 m) under mghttime, minimum VFR conditions or having a minimum intensity of at least 325 candela The lightung unit should emit a steady burning red light They should be used on the highest energized line If the lighted markers are installed on a line other than the highest catenary, then markers specified in paragraph 34 should be used in addition to the lighted markers (The maxumum distance between the line energizing the lighted markers and the highest catenary above the bghted marker should be no more than 20 feet.) Markers should be distunctively shaped, ie, sphencal, cylindrical, so they are not mustaken for items that are used to convey other information They should be visible in all directions from which arreraft are likely to approach
a. Suze and Color The diameter of the markers used on extensive catenary wres across canyons, lakes, nivers, etc, should be not less than 36 inches (91 cm) Smaller 20-inch
(51 cm) markers are permitted on less extensive power lines or on power lines below 50 feet (15 m) above the ground and within 1,500 feet (458 m) of an arport runway end. Each marker should be a solid color such as aviation orange, white, or yellow (See paragraph 131 for color standards)

b Installations

1. Spacing Lighted markers should be spaced equally along the wire at intervals of approximately 200 feet (61 m) or fraction thereof Intervals between markers should be less in critical areas near runway ends ($\mathbf{e}, 30$ to 50 feet) If the markers are installed on a line other than the highest catenary, then markers markers specified in paragraph 34 should be used in addition to the lighted markers The maximum distance between the line energizing the lighted markers and the highest catenary above the markers can be no more than 20 feet The bghted markers may be installed alternately along each wire if the distance between adjacent markers meets the spacing standard. This method allows the weight and wind loading factors to be distributed
2. Pattern. An alternating color scheme provides the most conspicuity aganst all backgrounds Mark overhead wires by alternating sold colored markers of aviation orange. white, and yellow Normally. an orange marker is placed at each end of a line and the spacing is adjusted (not to exceed 200 feet) to accommodate the rest of the markers When less than four markers are used, they should all be aviation orange

CHAPTER 11 MARKING AND LIGHTING OF CATENARY AND CATENARY SUPPORT STRUCTURES HIGH INTENSITY FLASHING WHITE LIGHTS

110 PURPOSE

Lighting catenary support structures with a high intensity (L-857) flashing white lightung system provides the highest degree of conspicuity both day and might In addition, the unque sequentia//simultaneous flashing light system alerts pilots of the associated catenary wres

111 STANDARDS

When this system is operated 24 hours a day, marking of the support structure is not necessary
a. Levels A system of three levels of sequentally flashing light units should be installed on each supportung structure or adjacent terran Install one level at the top Of the structure, one at the height of the lowest point in the catenary, and one level approximately midway between the other two light levels The nuddle level should normally be at least 50 feet (15 m) from the other two levels The nuddle light unit may be deleted when the distance between the top and the bottom light levels is less than 100 feet $(30 \mathrm{~m}$) If the installation presents a potental danger to maintenance personnel, or when necessary for lightning protection, the top level of lights may be mounted as low as 20 feet (6 m) below the highest point of the structure
b. Top Levels One or more hghts should be installed at the top of the structure to provide 360 -degree coverage
c. Flash Sequence The flash sequence should be nuddle. top level, and bottom level with all hghts on the same level flashing simultaneously The tune delay between flashes of levels is designed to present a unique system display
d Flash Rate Each senes of flashes is repeated 60 tumes every minute
e. Synchronization Although desirable, t h e corresponding light levels on associated supporting towers of a catenary crossing need not flash simultaneously
f. Honzontal Coverage 1 -he light unts at the middle level and bottom level should he installed so as to provide a minimum of 180 -degree coverage centered perpendicular to the flyway Where a catenary crossing is situated near a bend in a river, canyon, etc, or is not perpendicular to the flyway, the horizontal beam should he directed to provide the most effective light coverage to warn pilots approaching from either drection of the catenary wres
g Varation. The vertical and horizontal arrangements of the lights may be subject to the structural limits of the towers and/or adjacent terrain A tolerance of 20 percent from unform spacing of the bottom and nuddle light is allowed If the base of the supporting structure(s) is higher than the lowest point in the catenary, such as a canyon crossing, one or more hghts should be installed on the adjacent terrann at
the level of the lowest point in the span These lights should be installed on the structure or terratn at the height of the lowest point in the catenary
h Structures Exceeding 500 Feet (115m) AGL. When hugh intensity white lights are operated 24 hours a day, others methods of marking and lughting may be omitted. This system should not be recommended on structures 500 feet (153m) AGL or less unless and FAA aeronautical study shows otherwise

112 CONTROL DEVICE

The light intensity is controlled by a device that changes the intensity when the ambient light changes The system should automatically change intensty steps when the northern sky illumination in the Northern Hemisphere on a vertical surface is as follows
a. Day-to-Twrlight This should not occur before the illumination drops to 60 footcandles (6458 lux), but should occur before $\mathbf{1 t}$ drops below 35 footcandles (3767 lux) The illuminance sensing device should. if practical. face the northern sky in the Northern Hemisphere
b Twilght-to-Night. This should not occur before the illumination drops below 5 footcandles (538 lux), but should occur before it drops below 2 footcandles (21 5 lux)
c Nıght-to-Day The intensity changes listed in (a) and (b) above should be reversed when changing from the night to day mode

113 AREA SURROUNDING CATENARY SUPPORT STRUCTURES

The area in the immediate vicinty of the supporting structure's base should be clear of all ttems and/or objects of natural growth that could interfere with the line-of-sight between a pilot and the structure's lights

114 THREE OR MORE CATENARY SUPPORT STRUCTURES

Where a catenary wre crossing requires three or more supporting structures, the inner structures should be equipped with enough light units per level to provide a full coverage

115 CATENARY LIGHTING

Lighted markers are avalable for mereased might conspicuity of high-voltage (69 KV or higher) transmission line catenary wires Lighted markers provide conspicuity both day and nught, installation, size, color, and patter" should follow the guidelines of paragraphs 34 and 36 These markers should be used for mereased night conspicuty of
high-voltage (69 KV or higher) transmission line catenary wires near arports, heliports, across rivers, canyons, lakes, etc The lighted markers should be manufacturer certified as recognzable from a munmum distance of 4,000 feet (1219 m) under mightume, minimum VFR condtions or having a munimum intensity of at least 325 candela The lightung unit should emit a steady burming red light The marker should be used on the highest energized line If the lighted markers are installed on a line other than the highest catenary, then markers specified in paragraph 34 should be used in addition to the lighted makers (The maximum distance between the line energzing the lighted markers and the hughest catenary above the lughted marker can be no more than 20 feet) Markers should be distunctively shaped, 1 e, spherical, cylindrical, so they are not mistaken for items that are used to convey other information They should be visible in all directions from which arcraft are likely to approach
a Sue and Color The diameter of the markers used on extensive catenary wires across canyons, lakes, rivers, etc , should be not less than 36 inches (91 cm) Smaller 20-inch (51 cm) markers are permutted on less extensive power lines or on power lines below 50 feet (15 m) above the ground and within 1,500 feet (458 m) of an arport runway end Each
marker should be a solid color such as aviation orange, white, or yellow (See paragraph 131 for color standards)

b Installations

1 Spacing Markers should be spaced equally along the wire at intervals of approximately 200 feet (61 m) or fraction thereof Intervals between markers should be less in critucal areas near runway ends ($1 \mathrm{e}, 30$ to 50 feet) If hghted markers are installed on a line other than the highest catenary, then markers specified in paragraph 34 should be used in addition to the light markers The maximum distance between the line energizing the lighted marker and the hughest catenary above the lighted marker can be no more than 20 feet The markers may be unstalled alternately along each wire if the distance between adjacent markers meets the spacing standard This method allows the weight and wmd loadıng factors to be distributed

2 Pattern. An alternating color scheme provides the most conspicuity aganst all backgrounds Mark overhead wires by alternating solid colored makers of aviation orange, white, and yellow Normally, an orange marker is placed at each end of a line and the spacing is adjusted (not to exceed 200 feet) to accommodate the rest of the markers When less than four markers are used. they should all be aviation orange

CHAPTER 12 MARKING AND LIGHTING MOORED BALLOONS AND KITES

120. PURPOSE.

The purpose of marking and lighting moored balloons, lutes, and their cables or mooring lines is to indicate the presence and general defintion of these objects to pilots when converging from any normal angle of approach

121. STANDARDS.

These marking and lighting standards pertan to all moored balloons and lutes which require marking and lighting under FAR Part 101

122. MARKING

Flag markers should be used on mooring lines to warn pilots of their presence during daylight hours
a. Display Markers should be displayed at no more than 50 -foot (15 m) intervals and should be visible for at least 1 statute mile
b. Shape Markers should be rectangular in shape and not less than 2 feet $(06 \mathrm{~m})$ on a side Stuffeners should be used in the borders so as to expose a large area, prevent drooping in calm wind, or wrapping around the cable
c. color Patterns one of the following color patterns should be used.

1. Sold Color Aviation orange

2 orange and Whute Two trangular sections, one of aviation orange and the other white, combined to form a rectangle

123 LIGHTING

Flashing obstruction lights should be used on moored balloons or kites and their moorng lines to warn pdots of their presence durng the hours between sunset and sunrise and during periods of reduced visibility These lights may be operated 24 hours a day
a. Systems Flashmg red (L-864) or white beacons (L-865) may be used to light moored balloons or kites High intensity lights (L-856) are not recommended
b Display Flashing lights should be displayed on the top, nose section, tall section, and on the tether cable approximately 15 feet (4 mm) below the craft so as to define the extremes of size and shape Addtional lights should be equally spaced along the cable's overall length for each 350 feet $(107 \mathrm{~m})$ or fraction thereof
c. Exceptons When the requirements of this paragraph cannot be met, floodlighting may be used (See paragraph 45)

124 OPERATIONAL CHARACTERISTICS

The light intensity is controlled by a device that changes the intensity when the ambient light changes The system should automatically turn the lights on and change intensities as ambient light conditions change The reverse order should apply in changing from nughtume to daytime operation The lights should flash sımultaneously

CHAPTER 13 MARKING AND LIGHTING EQUIPMENT AND INFORMATION

130 PURPOSE.

This chapter hists all the documents relating to obstruction marking and lighting and where they may be obtained

131. PAINT STANDARD

Paint and aviation colors referred to in this publication should conform to Federal Standard FED-STD-595

Paint Standards Color Table

COLOR [1] ${ }^{3}$	NUMBER
Orange	12197
White	17875
Yellow	13538

NC\&-
m FEDERAL SPECIFICATION TI-P-59, AVIATION SURFACE PANT ready mixed international orange

- FEDERAL SPECIFICATION T1-102, AVIATION SURFACE PAINT, OLL TITANIUM LEAD ZINC
[3] FEDERAL SPECIFICATION TI-IO2, AVIATION SURFACE PAINT, OIL EXTERIOR READY-MIXED WHITE AND LIGHT TINTS

132 AVAILABILITY OF SPECIFICATIONS

Federal specifications describing t he technical characteristics o f vanous paints and ther application techniques are avallable There is a charge for these documents Please call for price The documents may be obtaned from

```
GSA- Specification Section
470 L'Enfant Plaza
Sute 8100
Washington, DC 20407
Telephone (202) 755-0325
```


133 TOLERANCE CHART

In-Service Aviation Orange Color Tolerance Charts are used to determine when the paint has faded beyond acceptable lumuts and repainting is needed The tolerance charts may be purchased from a supplier

134 LIGHTS AND ASSOCIATED EQUIPMENT

The lighting equipment referred to in this publication should conform with the latest edition of one of the following specifications, as applicable

a. Obstruction Laghting Equipment

1 A C 150/5345-43, FAA Specfication for Obstruction Lighting Equipment
2. Military Specifications MIL-L-6273, Light, Navigational, Beacon, Obstacle or Code, Type G-1
3. Military Specifications MIL-L-7830, Light Assembly, Markers, Aurcraft Obstruction

b Certfied Equupment

1 AC 150/5345-53, Aurport Lightang Certfication Program lists the manufacturers that have demonstrated complance with the specification requrements of AC 15cv5345-43
2. Other manufacturers' equipment may be used provided that equipment meets the specification requirements of $A C$ 150/5345-43.

c. Aupport Lighting Installation and Mantenance

1. AC 150/5340-21, Aurport Miscellaneous Lighting Visual Aids, provides guidance for the installation, maintenance, testing, and inspection of obstruction lighting for arrport visual ads such as arport beacons, wind cones, etc

2 AC 150/5340-26, Mantenance of Arport Visual Ald Faciltues, provides guidance on the mantenance of arrport visual and facilites

d. Vehucles

1. AC 150/5210-5, Painting, Marking, and Lighting of Vehicles Used on an Aurport, contans provisions for marking vehicles principally used on arports
e. FAA Facluthes Obstruction marking for FAA facilties shall conform to FAA Drawing Number D-5480, referenced in FAA Standard FAA-STD-003, Paint Systems for Structures

135. AVAILABILITY

The standards and specifications listed above may be obtamed free of charge from the designated office

a. Miltary Specfications

[^0]
b. FAA Specfications

Manager, ASD-1 10
Department of Transportation
Document Control Center
Martin Marietta/Arr Traffic Systems
475 School St., SW
Washington, DC 20024
Telephone (202) 646-2047
FAA Contractors Only

c. FAA Advisory Curculars

Department of Transportation
Property Use and Storage Section
Subsequent Distribution Office. M483 6
Ardmore East Business Center
3341 Q 75th Avenue
Landover, MD 20785
Telephone (301) 322-4961

appendix 1 Speclfications for Obstruction LIghtIng Equipment Classificatlon

Type	Description
L-810	Steady-burning Red Obstruction Light
L-856	High Intensity Flashing White Obstruction Light (40 FPM)
L-857	High Intensity Flashing White Obstruction Light (60 FPM)
L-864	Flashing Red Obstruction Light (20-40 FPM)
L-865	Medium Intensity Flashing White Obstruction Light (40-FPM)
L-866	Medium Intensity Flashing White Obstruction Light (60-FPM)
L-864/L-865	Dual Flashing Red Obstruction Light ($20-40$ FPM) and Medıum Intensity Flashing White Obstruction Light (40 FPM)
L-885	Red Catenary 60 FPM
FPM = Flashes Per Minute	

PUNTING AND LIGHTING OF CHIMNEYS, POLES, TOWERS AND SIMILAR STRUCTURES

FIG I

PAINTING AND LIGHTING OF WATER TOWERS AND SIMILAR OBSTRUCTIONS

LIGHTING ADJACENT STRUCTURES

LIGHTING ADJACENT STRUCTURES

LIGHTING ADJACENT STRUCTURES

FIG 1

RED ORSTRUCTION LIGHT STANDARDS

FIG 11

HIGH INTENSITY WHITE OBSTRUCTION LIGHT STANDARDS

FIG 13

HIGH AND MEDIUM INTENSITY WHITE OBSTRUCTION LIGHT STANDARDS

FIG 14

DUAL LIGHTING STANDARDS

DUAL LIGHTING STANDARDS

APPENDIX 2 Miscellaneous

1 RATIONALE FOR OBSTRUCTION LIGHT INTENSITIES

Sections 91117.91119 and 91155 of the FAR Part 91. General Operatung and Flight Rules, prescribe arrcraft speed restrictions, mimmum safe altitudes, and basic visual fight
rules (VFR) weather mimimums for governing the operation of arcraft, including helicopters, within the United States

2 DISTANCE VERSUS INTENSITIES

TBL 5 depicts the distance the varous intensities can be seen under 1 and 3 statute miles meteorological visibilties

> Distance/Intensity Table

Tlme Perlod	Meteorological Vsibillty Statute MIles	Distance Statute Mlles	Intensity Candelas
NIght		29(47km)	1,500 (\#- 25\%
	3 (48 km)	31 (49km)	2,000 (+/-25\%)
		14 (2 2km)	32
Day		15 (2 4km)	200,000
	1 ${ }^{(16 \mathrm{~km} \text {) }}$	14 (2 2km)	100,000
		10 (18km)	20,000 (+/- 25\%)
Day		30 (48km)	200,000
	3 (48km)	27 (43km)	100,000
		18 (29km)	20,000 (+ - 25%)
Twillght	1 (16km)	$\begin{array}{\|l\|} \hline 10(16 \mathrm{~km}) \\ \text { to } 15(24 \mathrm{~km}) \\ \hline \end{array}$	20,000 (+l- 25\%) $]^{1}$
Twlllght	3 (48km)	$\begin{array}{\|c\|} \hline 18(29 \mathrm{~km}) \\ \text { to } 42(67 \mathrm{~km}) \\ \hline \end{array}$	20,000 (+/- 25\%)

Note-

- DISTANCE CALCULATED FOR NORTH SKY ILLUMINANCE

TBL 5

3 CONCLUSION

Pilots of arcraft travelling at $165 \mathrm{knots}(190 \mathrm{mph} / 306 \mathrm{kph})$ or less should be able to see obstruction lights in sufficient tume to avord the structure by at least 2,000 feet $(610 \mathrm{~m})$ horizontally under all conditions of operation, provided the pilot is operatung in accordance with FAR Part 91 Pilots operating between 165 knots ($190 \mathrm{mph} / 303 \mathrm{~km} / \mathrm{h}$) and 250 knots ($288 \mathrm{mph} / 463 \mathrm{kph}$) should be able to see the obstruction lights unless the weather deteriorates to 3 statute miles visibility at nught, during which tune period 2,000 candelas would be required to see the lights at 12 statute miles (19 km) A higher intensity, with 3 statute mules visibility at night, could generate a residential annoyance factor In addition, arcraft in these speed ranges can normally be expected to operate under instrument flught rules (IFR) at nught when the visibility is 1 statute mile

4 DEFINITIONS

a Flight Visibility The average forward horizontal distance, from tbe cockpit of an arcraft in flight, at which promiment unlighted objects may be seen and identffied by
day and prominent lighted objects may be seen and identufied by nught.

Reference-

AIRMAN'SINFORMATIONMANUAL
PILOT/CONTROLLER GLOSSARY
b. Meteorological Visibility A term that denotes the greatest distance, expressed in statute miles, that selected objects (visibility markers) or lights of moderate intensity (25 candelas) can be seen and identffied under specified conditions of observation.

5 LIGHTING SYSTEM CONFIGURATION.

a. Configuration A Red lughtung system
b. Configuration B High intensity flashing white lighting system
c. Configuration c High intensity flashing white lighting system with appurtenance exceeding 40 feet (12 m) above the top of the structure
d Configuration D Medium intensity flashing white lighting system
e. Configuration E Dual hghtmg system (red/meduum intensty white lights)
f. Configuration F Dual lighting system (red/high intensity white lights) with an appurtenance exceeding 40 feet (12 m) above the top of the structure

Examplo-
CONFIGURATION B 3' DENOTES A HIGH INTENSITY LIGHTING SYSTEM WITH THREE LEVELS OF LIGHT

A

Alteration
 Preconstruction Notice, 1
 Reporting, 1

B

Balloons, Moored, 31

C

Conspicuty, Guyed Structures, 3

Construction

Preconstruction Notice, 1
Reporting, 1

K

Kites, Moored, 31

L

Lighting
Avation Red Obstruction LIghts, 9
Balloons, 31
Catenary, 9, 28, 29
Hugh Intensity Flashing White Lights
Control Devices, 29
Purpose, 29
Standards, 29
Surrounding Area, 29
Medrum Intensity Flashmg White Lughts
Control Device, 27
Purpose, 27
Standards, 27
Surrounding Area, 27
Dual, 9
Red/High Intensity Flashing White Lights
Antenna, 25
Control Device, 2.5
Installation, 25
Marking Omission, 25
Operation, 2.5
Purpose, 2.5
Red/Medum Intensity Flashmg White Lıghts Antenna, 23
Control Device, 23
Installation, 23

INDEX

Marking Omission, 23
Operation, 23
Purpose, 23
Equipment, 33
FAA Technical Standards, 3
Fallure Notufication, 3
High Intensity Flashung White Lightıng system, 7
High Intensity Flashmg White Lights
Antenna, 20
, Solid Stuctures, 20
Environmental Assessment, 3
Hyperbolic Coolng Towers, 20
Installation, 19
Prominent Buildings, 20
Pupose,
Towers and Skeletal Structures, 20
Hugh Intensity Flashmg Whate Obstruction Lıghts, 9
Ice Shields, 11
rmation, 3
Lamp Replacement, 10
Meduum Intensity Flashmg White Lıghting System, 7
Medium Intensity Flashmg White Lights
Chimneys, Flare Stacks, Solid Structures, 17
Control Device, 17
Grop of Obtractions,
Purpose, 17
Standards, 17
Towers and Skeletal Structures, 17
Lent Flashing Whion
Lights, 9
Nonstandard, 10
Notification of Restoratıon, 3
Objects to be Lighted, 3
Pbigh Dung Contruction
Proximity to Navigable Waterways, 11
Purpose, 9
Red Obstruction Lights
Cmneys, Flare Stacks, and Solud Structures, 14
Contol Devic, 13
Poles, Towers, and Skeletal Structures, 13
Promınent Buldıngs, 14
Purpose, 13
Standards, 13
Ind Tructures,
Supplied Voltage, 10
Systems, Configuration, 9
Temporary Construction Equipment Lighting, 9

M

Marking

Alternatives, 7
High Intensity Flashing White Lighting System, 7 Meduum Intensity Flashing White Lighting System, 7
Balloons, 31
Equipment, 33
FAA Technical Standards, 3
Information, 33
Kites, 31
Markers, 6
Flag, 7
Spherical, 6
Objects to be Marked, 3
Omission, 7

Paint
Colors, 5
Pattems, 5
Standards, 5
Pupose, 5

N

Notice
Alteration, 1
Construction, 1
Supplemental, 1
Notufication
Light Failure, 3
Laghting Restoration, 3

[^0]: Standardization Document Order Desk
 700 Robbins Avenue
 Bulding \#4, Section D
 Philadelpha, PA 19111-5094

